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Abstract

Large finite sum minimization problems, where the objective function is the sample mean of a finite
family of possibly nonconvex functions, arise in data analysis and machine learning problems, as well as in
many other applications. The key difficulty is computational cost due to the expensive evaluation of the
objective function and its derivatives. Thus, inexact approximations are used, subsampling being one of the
popular approaches. In this mini-course (or sequence of seminars) we consider methods of first and second
order based on subsampled directions. The Inexact Restoration framework, as a tool for subsample schedul-
ing, is suitably coupled with an optimization method and yields a natural way of sample-size dynamical
adjustment within the optimization method. The sampling strategy is embedded into either a line search
or a trust region methodology. We discuss local and global properties for finding approximate first- and
second- order optimal points and function evaluation complexity results. The convergence, in almost-sure
sense, is proved for stochastic first order and second order directions. The proposed algorithms are validated
on binary classification problems (both convex and nonconvex). An important property of this approach is
that a burdensome tuning of the parameters involved is not required.

In the second part we focus on line search strategies. The existence of non-martingal errors prevents the
direct application of Armijo-like step-size selection in the case of stochastic (subsampled) problems, even in
the case of independent identically distributed (i.i.d.) samples. Thus, we propose a method with additional
sampling at each iteration which resolves this difficulty with a small cost and combines efficiently the line
search step sizes with suitably decaying step sizes. Stationarity of limit points is proved, in the almost-
sure sense, while almost-sure convergence of the sequence of approximations to the solution holds with the
additional hypothesis that the functions are strongly convex. Numerical experiments, including comparisons,
with state-of-the art stochastic optimization methods, show the efficiency of the proposed approach.



